Chlorogenic acid facilitates root hair formation in lettuce seedlings.

نویسندگان

  • Megumi Narukawa
  • Kaori Kanbara
  • Yuji Tominaga
  • Yurika Aitani
  • Kazumasa Fukuda
  • Takaaki Kodama
  • Noriko Murayama
  • Yoshiki Nara
  • Takashi Arai
  • Masae Konno
  • Shinji Kamisuki
  • Fumio Sugawara
  • Masako Iwai
  • Yasunori Inoue
چکیده

Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. A low pH (pH 4) medium induced root hair formation in lettuce (Lactuca sativa L.) seedlings, and the decapitation of shoots inhibited root hair formation. The addition of shoot extract to the medium restored root hair formation in the decapitated lettuce seedlings. These results suggest that factors essential to the formation of root hairs may be present in the shoot. We purified one factor from the shoot that facilitates root hair formation. This factor was identified as chlorogenic acid (CGA), a common polyphenol in higher plants. The presence of exogenous CGA in the medium induced root hair formation in decapitated lettuce seedlings at pH 4.0 and in intact lettuce seedlings at pH 6.0. The optimum concentration of CGA for root hair formation was identified as 10(-5) M. Decapitation of the shoots reduced the CGA content in the roots to approximately one-third that in intact plants. Application of the CGA biosynthesis inhibitor L-alpha-aminooxy-beta-phenylpropionic acid (AOPP, 10(-6) M) to intact seedlings grown at pH 4.0 reduced both the CGA content of the roots and the total amount of root hairs. The addition of exogenous CGA restored root hair formation in intact seedlings treated with AOPP. These results suggest that CGA is essential for root hair formation in lettuce seedlings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis.

Root hair formation is an important model with which to study cell patterning and differentiation in higher plants. Ethylene and auxin are critical regulators of root hair development. The role of jasmonates (JAs) was examined in Arabidopsis root hair development as well as their interactions with ethylene in this process. The results have shown that both methyl jasmonate (MeJA) and jasmonic ac...

متن کامل

Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation.

The tightly regulated expression patterns of structural cell wall proteins in several plant species indicate that they play a crucial role in determining the extracellular matrix structure for specific cell types. We demonstrate that AtPRP3, a proline-rich cell wall protein in Arabidopsis, is expressed in root-hair-bearing epidermal cells at the root/shoot junction and within the root different...

متن کامل

Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce

In this study, we determined the effects of raising seedlings with different light spectra such as with blue, red, and blue + red light-emitting diode (LED) lights on seedling quality and yield of red leaf lettuce plants. The light treatments we used were applied for a period of 1 week and consisted of 100 mmol m s of blue light, simultaneous irradiation with 50 mmol m s of blue light and 50 mm...

متن کامل

Auxin and ethylene promote root hair elongation in Arabidopsis.

Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutati...

متن کامل

An assessment of the role of ethylene in mediating lettuce (Lactuca sativa) root growth at high temperatures.

Growth of temperate lettuce (Lactuca sativa) plants aeroponically in tropical greenhouses under ambient root-zone temperatures (A-RZTs) exposes roots to temperatures of up to 40 degrees C during the middle of the day, and severely limits root and shoot growth. The role of ethylene in inhibiting growth was investigated with just-germinated (24-h-old) seedlings in vitro, and 10-d-old plants grown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 50 3  شماره 

صفحات  -

تاریخ انتشار 2009